Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Mol Psychiatry ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503924

RESUMO

Decades of psychosis research highlight the prevalence and the clinical significance of negative emotions, such as fear and anxiety. Translational evidence demonstrates the pivotal role of the amygdala in fear and anxiety. However, most of these approaches have used hypothesis-driven analyses with predefined regions of interest. A data-driven analysis may provide a complimentary, unbiased approach to identifying brain correlates of fear and anxiety. The aim of the current study was to identify the brain basis of fear and anxiety in early psychosis and controls using a data-driven approach. We analyzed data from the Human Connectome Project for Early Psychosis, a multi-site study of 125 people with psychosis and 58 controls with resting-state fMRI and clinical characterization. Multivariate pattern analysis of whole-connectome data was used to identify shared and psychosis-specific brain correlates of fear and anxiety using the NIH Toolbox Fear-Affect and Fear-Somatic Arousal scales. We then examined clinical correlations of Fear-Affect scores and connectivity patterns. Individuals with psychosis had higher levels of Fear-Affect scores than controls (p < 0.05). The data-driven analysis identified a cluster encompassing the amygdala and hippocampus where connectivity was correlated with Fear-Affect score (p < 0.005) in the entire sample. The strongest correlate of Fear-Affect was between this cluster and the anterior insula and stronger connectivity was associated with higher Fear-Affect scores (r = 0.31, p = 0.0003). The multivariate pattern analysis also identified a psychosis-specific correlate of Fear-Affect score between the amygdala/hippocampus cluster and a cluster in the ventromedial prefrontal cortex (VMPFC). Higher Fear-Affect scores were correlated with stronger amygdala/hippocampal-VMPFC connectivity in the early psychosis group (r = 0.33, p = 0.002), but not in controls (r = -0.15, p = 0.28). The current study provides evidence for the transdiagnostic role of the amygdala, hippocampus, and anterior insula in the neural basis of fear and anxiety and suggests a psychosis-specific relationship between fear and anxiety symptoms and amygdala/hippocampal-VMPFC connectivity. Our novel data-driven approach identifies novel, psychosis-specific treatment targets for fear and anxiety symptoms and provides complimentary evidence to decades of hypothesis-driven approaches examining the brain basis of threat processing.

2.
Biol Psychiatry ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452884

RESUMO

BACKGROUND: Psychomotor disturbances are observed across psychiatric disorders and often manifest as psychomotor slowing, agitation, disorganized behavior, or catatonia. Psychomotor function includes both cognitive and motor components, but the neural circuits driving these subprocesses and how they relate to symptoms have remained elusive for centuries. METHODS: We analyzed data from the HCP-EP (Human Connectome Project for Early Psychosis), a multisite study of 125 participants with early psychosis and 58 healthy participants with resting-state functional magnetic resonance imaging and clinical characterization. Psychomotor function was assessed using the 9-hole pegboard task, a timed motor task that engages mechanical and psychomotor components of action, and tasks assessing processing speed and task switching. We used multivariate pattern analysis of whole-connectome data to identify brain correlates of psychomotor function. RESULTS: We identified discrete brain circuits driving the cognitive and motor components of psychomotor function. In our combined sample of participants with psychosis (n = 89) and healthy control participants (n = 52), the strongest correlates of psychomotor function (pegboard performance) (p < .005) were between a midline cerebellar region and left frontal region and presupplementary motor area. Psychomotor function was correlated with both cerebellar-frontal connectivity (r = 0.33) and cerebellar-presupplementary motor area connectivity (r = 0.27). However, the cognitive component of psychomotor performance (task switching) was correlated only with cerebellar-frontal connectivity (r = 0.19), whereas the motor component (processing speed) was correlated only with cerebellar-presupplementary motor area connectivity (r = 0.15), suggesting distinct circuits driving unique subprocesses of psychomotor function. CONCLUSIONS: We identified cerebellar-cortical circuits that drive distinct subprocesses of psychomotor function. Future studies should probe relationships between cerebellar connectivity and psychomotor performance using neuromodulation.

3.
Front Psychiatry ; 13: 824878, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222123

RESUMO

Individuals with schizophrenia are 10 times more likely to have a tobacco use disorder than the general population. Up to 80% of those with schizophrenia smoke tobacco regularly, a prevalence three-times that of the general population. Despite the striking prevalence of tobacco use in schizophrenia, current treatments are not tailored to the pathophysiology of this population. There is growing support for use of noninvasive brain stimulation (NIBS) to treat substance use disorders (SUDs), particularly for tobacco use in neurotypical smokers. NIBS interventions targeting the dorsolateral prefrontal cortex have been effective for nicotine dependence in control populations-so much so that transcranial magnetic stimulation is now FDA-approved for smoking cessation. However, this has not borne out in the studies using this approach in schizophrenia. We performed a literature search to identify articles using NIBS for the treatment of nicotine dependence in people with schizophrenia, which identified six studies. These studies yielded mixed results. Is it possible that nicotine has a unique effect in schizophrenia that is different than its effect in neurotypical smokers? Individuals with schizophrenia may receive additional benefit from nicotine's pro-cognitive effects than control populations and may use nicotine to improve brain network abnormalities from their illness. Therefore, clinical trials of NIBS interventions should test a schizophrenia-specific target for smoking cessation. We propose a generalized approach whereby schizophrenia-specific brain circuitry related to SUDs is be identified and then targeted with NIBS interventions.

4.
Front Psychiatry ; 13: 804055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35153877

RESUMO

Tobacco use is the top preventable cause of early mortality in schizophrenia. Over 60% of people with schizophrenia smoke, three times the general prevalence. The biological basis of this increased risk is not understood, and existing interventions do not target schizophrenia-specific pathology. We therefore used a connectome-wide analysis to identify schizophrenia-specific circuits of nicotine addiction. We reanalyzed data from two studies: In Cohort 1, 35 smokers (18 schizophrenia, 17 control) underwent resting-state fMRI and clinical characterization. A multivariate pattern analysis of whole-connectome data was used to identify the strongest links between cigarette use and functional connectivity. In Cohort 2, 12 schizophrenia participants and 12 controls were enrolled in a randomized, controlled crossover study of nicotine patch with resting-state fMRI. We correlated change in network functional connectivity with nicotine dose. In Cohort 1, the strongest (p < 0.001) correlate between connectivity and cigarette use was driven by individual variation in default mode network (DMN) topography. In individuals with greater daily cigarette consumption, we observed a pathological expansion of the DMN territory into the identified parieto-occipital region, while in individuals with lower daily cigarette consumption, this region was external to the DMN. This effect was entirely driven by schizophrenia participants. Given the relationship between DMN topography and nicotine use we observed in Cohort 1, we sought to directly test the impact of nicotine on this network using an independent second cohort. In Cohort 2, nicotine reduced DMN connectivity in a dose-dependent manner (R = -0.50; 95% CI -0.75 to -0.12, p < 0.05). In the placebo condition, schizophrenia subjects had hyperconnectivity compared to controls (p < 0.05). Nicotine administration normalized DMN hyperconnectivity in schizophrenia. We here provide direct evidence that the biological basis of nicotine dependence is different in schizophrenia and in non-schizophrenia populations. Our results suggest the high prevalence of nicotine use in schizophrenia may be an attempt to correct a network deficit known to interfere with cognition.

5.
Mol Psychiatry ; 27(2): 1177-1183, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34697450

RESUMO

The early stage of psychosis (ESP) is a critical period where effective intervention has the most favorable impact on outcomes. Thalamic connectivity abnormalities have been consistently found in psychosis, and are associated with clinical symptoms and cognitive deficits. However, most studies consider ESP patients as a homogeneous population and fail to take the duration of illness into account. In this study, we aimed to capture the progression of thalamic connectivity changes over the first five years of psychosis. Resting-state functional MRI scans were collected from 156 ESP patients (44 with longitudinal data) and 82 healthy controls (24 with longitudinal data). We first performed a case-control analysis comparing thalamic connectivity with 13 networks in the cortex and cerebellum. Next, we modelled the shape (flat, linear, curvilinear) of thalamic connectivity trajectories by comparing flexible non-linear versus linear models. We then tested the significance of the duration of illness and diagnosis in trajectories that changed over time. Connectivity changed over the ESP period between the thalamus and default mode network (DMN) and fronto-parietal network (FPN) nodes in both the cortex and cerebellum. Three models followed a curvilinear trajectory (early increase followed by a subsequent decrease), while thalamo-cerebellar FPN connectivity followed a linear trajectory of steady reductions over time, indicating different rates of change. Finally, diagnosis significantly predicted thalamic connectivity. Thalamo-cortical and thalamo-cerebellar connectivity change in a dynamic fashion during the ESP period. A better understanding of these changes may provide insights into the compensatory and progressive changes in functional connectivity in the early stages of illness.


Assuntos
Transtornos Psicóticos , Tálamo , Cerebelo , Humanos , Imageamento por Ressonância Magnética , Vias Neurais
6.
Neuroimage Clin ; 32: 102893, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34911197

RESUMO

BACKGROUND: Auditory hallucinations (AH) are typically associated with schizophrenia (SZ), but they are also prevalent in bipolar disorder (BD). Despite the large body of research on the neural correlates of AH in SZ, the pathophysiology underlying AH remains unclear. Few studies have examined the neural substrates associated with propensity for AH in BD. Investigating AH across the psychosis spectrum has the potential to inform about the neural signature associated with the trait of AH, irrespective of psychiatric diagnosis. METHODS: We compared resting state functional magnetic resonance imaging data in psychosis patients with (n = 90 AH; 68 SZ, 22 BD) and without (n = 55 NAH; 16 SZ, 39 BD) lifetime AH. We performed region of interest (ROI)-to-ROI functional connectivity (FC) analysis using 91 cortical, 15 subcortical, and 26 cerebellar atlas-defined regions. The primary aim was to identify FC differences between patients with and without lifetime AH. We secondarily examined differences between AH and NAH within each diagnosis. RESULTS: Compared to the NAH group, patients with AH showed higher FC between cerebellum and frontal (left precentral gyrus), temporal [right middle temporal gyrus (MTG), left inferior temporal gyrus (ITG), left temporal fusiform gyrus)], parietal (bilateral superior parietal lobules), and subcortical (left accumbens, left palldium) brain areas. AH also showed lower FC between temporal lobe regions (between right ITG and right MTG and bilateral superior temporal gyri) relative to NAH. CONCLUSIONS: Our findings suggest that dysconnectivity involving the cerebellum and temporal lobe regions may be common neurofunctional elements associated with AH propensity across the psychosis spectrum. We also found dysconnectivity patterns that were unique to lifetime AH within SZ or bipolar psychosis, suggesting both common and distinct mechanisms underlying AH pathophysiology in these disorders.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Encéfalo , Mapeamento Encefálico , Cerebelo/diagnóstico por imagem , Alucinações/diagnóstico por imagem , Alucinações/etiologia , Humanos , Imageamento por Ressonância Magnética , Transtornos Psicóticos/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Lobo Temporal/diagnóstico por imagem
7.
Nature ; 600(7888): 269-273, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34789878

RESUMO

The brain is the seat of body weight homeostasis. However, our inability to control the increasing prevalence of obesity highlights a need to look beyond canonical feeding pathways to broaden our understanding of body weight control1-3. Here we used a reverse-translational approach to identify and anatomically, molecularly and functionally characterize a neural ensemble that promotes satiation. Unbiased, task-based functional magnetic resonance imaging revealed marked differences in cerebellar responses to food in people with a genetic disorder characterized by insatiable appetite. Transcriptomic analyses in mice revealed molecularly and topographically -distinct neurons in the anterior deep cerebellar nuclei (aDCN) that are activated by feeding or nutrient infusion in the gut. Selective activation of aDCN neurons substantially decreased food intake by reducing meal size without compensatory changes to metabolic rate. We found that aDCN activity terminates food intake by increasing striatal dopamine levels and attenuating the phasic dopamine response to subsequent food consumption. Our study defines a conserved satiation centre that may represent a novel therapeutic target for the management of excessive eating, and underscores the utility of a 'bedside-to-bench' approach for the identification of neural circuits that influence behaviour.


Assuntos
Manutenção do Peso Corporal/genética , Manutenção do Peso Corporal/fisiologia , Cerebelo/fisiologia , Alimentos , Biossíntese de Proteínas , Genética Reversa , Resposta de Saciedade/fisiologia , Adulto , Animais , Regulação do Apetite/genética , Regulação do Apetite/fisiologia , Núcleos Cerebelares/citologia , Núcleos Cerebelares/fisiologia , Cerebelo/citologia , Sinais (Psicologia) , Dopamina/metabolismo , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Feminino , Homeostase , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neostriado/metabolismo , Neurônios/fisiologia , Obesidade/genética , Filosofia , Adulto Jovem
8.
Schizophr Res ; 238: 108-120, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34653740

RESUMO

OBJECTIVE: Negative symptoms of schizophrenia are substantially disabling and treatment resistant. Novel treatments like repetitive transcranial magnetic stimulation (TMS) need to be examined for the same using the experimental medicine approach that incorporates tests of mechanism of action in addition to clinical efficacy in trials. METHODS: Study was a double-blind, parallel, randomized, sham-controlled trial recruiting schizophrenia with at least a moderate severity of negative symptoms. Participants were randomized to real or sham intermittent theta burst stimulation (iTBS) under MRI-guided neuro-navigation, targeting the cerebellar vermis area VII-B, at a stimulus intensity of 100% active motor threshold, two sessions/day for five days (total = 6000 pulses). Assessments were conducted at baseline (T0), day-6 (T1) and week-6 (T2) after initiation of intervention. Main outcomes were, a) Scale for the Assessment of Negative Symptoms (SANS) score (T0, T1, T2), b) fronto-cerebellar resting state functional connectivity (RSFC) (T0, T1). RESULTS: Thirty participants were recruited in each arm. Negative symptoms improved in both arms (p < 0.001) but was not significantly different between the two arms (p = 0.602). RSFC significantly increased between the cerebellar vermis and the right inferior frontal gyrus (pcluster-FWER = 0.033), right pallidum (pcluster-FWER = 0.042) and right frontal pole (pcluster-FWER = 0.047) in the real arm with no change in the sham arm. CONCLUSION: Cerebellar vermal iTBS engaged a target belonging to the class of cerebello-subcortical-cortical networks, implicated in negative symptoms of schizophrenia. However, this did not translate to a superior clinical efficacy. Future trials should employ enhanced midline cerebellar TMS stimulation parameters for longer durations that can potentiate and translate biological changes into clinical effects.


Assuntos
Vermis Cerebelar , Esquizofrenia , Cerebelo/diagnóstico por imagem , Humanos , Córtex Pré-Frontal , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/terapia , Estimulação Magnética Transcraniana
10.
Front Psychiatry ; 11: 573002, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329111

RESUMO

Background: Psychotic disorders are characterized by impairment in social cognitive processing, which is associated with poorer community functioning. However, the neural mechanisms of social impairment in psychosis remain unclear. Social impairment is a hallmark of other psychiatric illnesses as well, including autism spectrum disorders (ASD), and the nature and degree of social cognitive impairments across psychotic disorders and ASD are similar, suggesting that mechanisms that are known to underpin social impairments in ASD may also play a role in the impairments seen in psychosis. Specifically, in both humans and animal models of ASD, a cerebellar-parietal network has been identified that is directly related to social cognition and social functioning. In this study we examined social cognition and resting-state brain connectivity in people with psychosis and in neurotypical adults. We hypothesized that social cognition would be most strongly associated with cerebellar-parietal connectivity, even when using a whole-brain data driven approach. Methods: We examined associations between brain connectivity and social cognition in a trans-diagnostic sample of people with psychosis (n = 81) and neurotypical controls (n = 45). Social cognition was assessed using the social cognition domain score of the MATRICS Consensus Cognitive Battery. We used a multivariate pattern analysis to correlate social cognition with resting-state functional connectivity at the individual voxel level. Results: This approach identified a circuit between right cerebellar Crus I, II and left parietal cortex as the strongest correlate of social cognitive performance. This connectivity-cognition result was observed in both people with psychotic disorders and in neurotypical adults. Conclusions: Using a data-driven whole brain approach we identified a cerebellar-parietal circuit that was robustly associated with social cognitive ability, consistent with findings from people with ASD and animal models. These findings suggest that this circuit may be marker of social cognitive impairment trans-diagnostically and support cerebellar-parietal connectivity as a potential therapeutic target for enhancing social cognition.

11.
Am J Psychiatry ; 177(10): 965-973, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32660299

RESUMO

OBJECTIVE: Low-dose testosterone has been shown to improve depression symptom severity, fatigue, and sexual function in small studies in women not formally diagnosed with major depressive disorder. The authors sought to determine whether adjunctive low-dose transdermal testosterone improves depression symptom severity, fatigue, and sexual function in women with antidepressant-resistant major depression. A functional MRI (fMRI) substudy examined effects on activity in the anterior cingulate cortex (ACC), a brain region important in mood regulation. METHODS: The authors conducted an 8-week randomized double-blind placebo-controlled trial of adjunctive testosterone cream in 101 women, ages 21-70, with antidepressant-resistant major depression. The primary outcome measure was depression symptom severity as assessed by the Montgomery-Åsberg Depression Rating Scale (MADRS). Secondary endpoints included fatigue, sexual function, and safety measures. The primary outcome of the fMRI substudy (N=20) was change in ACC activity. RESULTS: The participants' mean age was 47 years (SD=14) and their mean baseline MADRS score was 26.6 (SD=5.9). Eighty-seven (86%) participants completed 8 weeks of treatment. MADRS scores decreased in both study arms from baseline to week 8 (testosterone arm: from 26.8 [SD=6.3] to 15.3 [SD=9.6]; placebo arm: from 26.3 [SD=5.4] to 14.4 [SD=9.3]), with no significant difference between groups. Improvement in fatigue and sexual function did not differ between groups, nor did side effects. fMRI results showed a relationship between ACC activation and androgen levels before treatment but no difference in ACC activation with testosterone compared with placebo. CONCLUSIONS: Adjunctive transdermal testosterone, although well tolerated, was not more effective than placebo in improving symptoms of depression, fatigue, or sexual dysfunction. Imaging in a subset of participants demonstrated that testosterone did not result in greater activation of the ACC.


Assuntos
Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Testosterona/uso terapêutico , Adulto , Idoso , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Resistente a Tratamento/diagnóstico por imagem , Método Duplo-Cego , Quimioterapia Combinada , Feminino , Neuroimagem Funcional , Giro do Cíngulo/diagnóstico por imagem , Humanos , Hidrocortisona/sangue , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Creme para a Pele , Testosterona/administração & dosagem , Testosterona/sangue , Adulto Jovem
12.
Mol Psychiatry ; 25(9): 2200, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30651603

RESUMO

The original version of this article omitted the author "Roscoe O. Brady Jr." from the "Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, MA, USA" and the "Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA". This has been corrected in both the PDF and HTML versions of the article.

13.
Mol Psychiatry ; 25(9): 2119-2129, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-30443042

RESUMO

Neuroimaging studies of psychotic disorders have demonstrated abnormalities in structural and functional connectivity involving widespread brain networks. However, these group-level observations have failed to yield any biomarkers that can provide confirmatory evidence of a patient's current symptoms, predict future symptoms, or predict a treatment response. Lack of precision in both neuroanatomical and clinical boundaries have likely contributed to the inability of even well-powered studies to resolve these key relationships. Here, we employed a novel approach to defining individual-specific functional connectivity in 158 patients diagnosed with schizophrenia (n = 49), schizoaffective disorder (n = 37), or bipolar disorder with psychosis (n = 72), and identified neuroimaging features that track psychotic symptoms in a dimension- or disorder-specific fashion. Using individually specified functional connectivity, we were able to estimate positive, negative, and manic symptoms that showed correlations ranging from r = 0.35 to r = 0.51 with the observed symptom scores. Comparing optimized estimation models among schizophrenia spectrum patients, positive and negative symptoms were associated with largely non-overlapping sets of cortical connections. Comparing between schizophrenia spectrum and bipolar disorder patients, the models for positive symptoms were largely non-overlapping between the two disorder classes. Finally, models derived using conventional region definition strategies performed at chance levels for most symptom domains. Individual-specific functional connectivity analyses revealed important new distinctions among cortical circuits responsible for the positive and negative symptoms, as well as key new information about how circuits underlying symptom expressions may vary depending on the underlying etiology and illness syndrome from which they manifest.


Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Esquizofrenia , Biomarcadores , Humanos , Imageamento por Ressonância Magnética , Transtornos Psicóticos/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem
14.
Proc Natl Acad Sci U S A ; 116(18): 9050-9059, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30988201

RESUMO

Converging evidence indicates that groups of patients with nominally distinct psychiatric diagnoses are not separated by sharp or discontinuous neurobiological boundaries. In healthy populations, individual differences in behavior are reflected in variability across the collective set of functional brain connections (functional connectome). These data suggest that the spectra of transdiagnostic symptom profiles observed in psychiatric patients may map onto detectable patterns of network function. To examine the manner through which neurobiological variation might underlie clinical presentation, we obtained fMRI data from over 1,000 individuals, including 210 diagnosed with a primary psychotic disorder or affective psychosis (bipolar disorder with psychosis and schizophrenia or schizoaffective disorder), 192 presenting with a primary affective disorder without psychosis (unipolar depression, bipolar disorder without psychosis), and 608 demographically matched healthy comparison participants recruited through a large-scale study of brain imaging and genetics. Here, we examine variation in functional connectomes across psychiatric diagnoses, finding striking evidence for disease connectomic "fingerprints" that are commonly disrupted across distinct forms of pathology and appear to scale as a function of illness severity. The presence of affective and psychotic illnesses was associated with graded disruptions in frontoparietal network connectivity (encompassing aspects of dorsolateral prefrontal, dorsomedial prefrontal, lateral parietal, and posterior temporal cortices). Conversely, other properties of network connectivity, including default network integrity, were preferentially disrupted in patients with psychotic illness, but not patients without psychotic symptoms. This work allows us to establish key biological and clinical features of the functional connectomes of severe mental disease.


Assuntos
Conectoma/métodos , Transtornos do Humor/fisiopatologia , Transtornos Psicóticos/fisiopatologia , Adulto , Transtorno Bipolar/fisiopatologia , Encéfalo/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Descanso/fisiologia , Esquizofrenia/fisiopatologia
15.
Am J Psychiatry ; 176(7): 512-520, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30696271

RESUMO

OBJECTIVE: The interpretability of results in psychiatric neuroimaging is significantly limited by an overreliance on correlational relationships. Purely correlational studies cannot alone determine whether behavior-imaging relationships are causal to illness, functionally compensatory processes, or purely epiphenomena. Negative symptoms (e.g., anhedonia, amotivation, and expressive deficits) are refractory to current medications and are among the foremost causes of disability in schizophrenia. The authors used a two-step approach in identifying and then empirically testing a brain network model of schizophrenia symptoms. METHODS: In the first cohort (N=44), a data-driven resting-state functional connectivity analysis was used to identify a network with connectivity that corresponds to negative symptom severity. In the second cohort (N=11), this network connectivity was modulated with 5 days of twice-daily transcranial magnetic stimulation (TMS) to the cerebellar midline. RESULTS: A breakdown of connectivity in a specific dorsolateral prefrontal cortex-to-cerebellum network directly corresponded to negative symptom severity. Restoration of network connectivity with TMS corresponded to amelioration of negative symptoms, showing a statistically significant strong relationship of negative symptom change in response to functional connectivity change. CONCLUSIONS: These results demonstrate that a connectivity breakdown between the cerebellum and the right dorsolateral prefrontal cortex is associated with negative symptom severity and that correction of this breakdown ameliorates negative symptom severity, supporting a novel network hypothesis for medication-refractory negative symptoms and suggesting that network manipulation may establish causal relationships between network markers and clinical phenomena.


Assuntos
Cerebelo/patologia , Rede Nervosa/patologia , Córtex Pré-Frontal/patologia , Esquizofrenia/patologia , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Feminino , Humanos , Masculino , Modelos Biológicos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Neuroimagem , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiopatologia , Escalas de Graduação Psiquiátrica , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/fisiopatologia , Índice de Gravidade de Doença , Estimulação Magnética Transcraniana , Adulto Jovem , beta-Lactamases
16.
J Clin Psychopharmacol ; 38(1): 80-85, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29232311

RESUMO

PURPOSE: Rosenblat and McIntyre (Acta Psychiatr Scand. 2015;132: 180-191) propose that immune disorders are important mediators between bipolar disorders and medical comorbidities. Rosenblat et al (Bipolar Disord. 2016;18:89-101) present a meta-analysis showing that adjunctive anti-inflammatory agents could evoke moderate antidepressant responses in bipolar disorders. We propose using the anti-inflammatory drug colchicine to improve the long-term safety and efficacy of lithium treatment for bipolar disorders. METHODS: This report is based on searches of the PubMed and Web of Science databases. RESULTS: Bipolar disorders are associated with significant medical comorbidities such as hypertension, overweight/obesity, diabetes mellitus, metabolic syndrome, and arteriosclerosis, accompanied by enhanced release of pro-inflammatory markers during changes in mood state. During lithium therapy, granulocyte-colony stimulating factor, CD34+ hematopoietic stem/progenitor cells, and neutrophil elastase enter the circulation with activated neutrophils to promote the extravascular migration of activated neutrophils and enhance tissue inflammation. Concurrent treatment with lithium and low-dose colchicine could facilitate the responsiveness of bipolar patients to lithium by reducing leukocyte tissue emigration, the release of neutrophil elastase, and the release of leukocyte pro-inflammatory cytokines such as IL-1ß that are regulated by the NLRP3 inflammasome assembly complex. CONCLUSIONS: Concurrent therapy with lithium and low-dose colchicine could reduce complications involving leukocyte-mediated inflammatory states in bipolar patients and promote patient acceptance and responsiveness to lithium therapy.


Assuntos
Colchicina/administração & dosagem , Inflamação/prevenção & controle , Compostos de Lítio/efeitos adversos , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Transtorno Bipolar/complicações , Transtorno Bipolar/tratamento farmacológico , Colchicina/farmacologia , Citocinas , Relação Dose-Resposta a Droga , Humanos , Inflamação/induzido quimicamente , Compostos de Lítio/administração & dosagem , Aceitação pelo Paciente de Cuidados de Saúde , Resultado do Tratamento
17.
Oncotarget ; 8(34): 56110-56125, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28915577

RESUMO

Histone deacetylase inhibitors (HDACis) are a potent class of tumor-suppressive agents traditionally believed to exert their effects through loosening tightly-wound chromatin resulting in de-inhibition of various tumor suppressive genes. Recent literature however has shown altered intratumoral hypoxia signaling with HDACi administration not attributable to changes in chromatin structure. We sought to determine the precise mechanism of HDACi-mediated hypoxia signaling attenuation using vorinostat (SAHA), an FDA-approved class I/IIb/IV HDACi. Through an in-vitro and in-vivo approach utilizing cell lines for hepatocellular carcinoma (HCC), osteosarcoma (OS), and glioblastoma (GBM), we demonstrate that SAHA potently inhibits HIF-a nuclear translocation via direct acetylation of its associated chaperone, heat shock protein 90 (Hsp90). In the presence of SAHA we found elevated levels of acetyl-Hsp90, decreased interaction between acetyl-Hsp90 and HIF-a, decreased nuclear/cytoplasmic HIF-α expression, absent HIF-α association with its nuclear karyopharyin Importin, and markedly decreased HIF-a transcriptional activity. These changes were associated with downregulation of downstream hypoxia molecules such as endothelin 1, erythropoietin, glucose transporter 1, and vascular endothelial growth factor. Findings were replicated in an in-vivo Hep3B HRE-Luc expressing xenograft, and were associated with significant decreases in xenograft tumor size. Altogether, this study highlights a novel mechanism of action of an important class of chemotherapeutic.

18.
J Affect Disord ; 217: 205-209, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28415008

RESUMO

BACKGROUND: Using resting-state functional magnetic resonance imaging (rsfMRI), we previously compared cohorts of bipolar I subjects in a manic state to those in a euthymic state to identify mood state-specific patterns of cortico-amygdala connectivity. Our results suggested that mania is reflected in the disruption of emotion regulation circuits. We sought to replicate this finding in a group of subjects with bipolar disorder imaged longitudinally across states of mania and euthymia METHODS: We divided our subjects into three groups: 26 subjects imaged in a manic state, 21 subjects imaged in a euthymic state, and 10 subjects imaged longitudinally across both mood states. We measured differences in amygdala connectivity between the mania and euthymia cohorts. We then used these regions of altered connectivity to examine connectivity in the longitudinal bipolar group using a within-subjects design. RESULTS: Our findings in the mania vs euthymia cohort comparison were replicated in the longitudinal analysis. Bipolar mania was differentiated from euthymia by decreased connectivity between the amygdala and pre-genual anterior cingulate cortex. Mania was also characterized by increased connectivity between amygdala and the supplemental motor area, a region normally anti-correlated to the amygdala in emotion regulation tasks. LIMITATIONS: Stringent controls for movement effects limited the number of subjects in the longitudinal sample. CONCLUSIONS: In this first report of rsfMRI conducted longitudinally across mood states, we find that previously observed between-group differences in amygdala connectivity are also found longitudinally within subjects. These results suggest resting state cortico-amygdala connectivity is a biomarker of mood state in bipolar disorder.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Transtorno Bipolar/fisiopatologia , Giro do Cíngulo/fisiopatologia , Adulto , Transtorno Bipolar/psicologia , Mapeamento Encefálico , Estudos de Coortes , Transtorno Ciclotímico/fisiopatologia , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino
19.
J Affect Disord ; 207: 367-376, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27744225

RESUMO

BACKGROUND: This study aimed to identify how the activity of large-scale brain networks differs between mood states in bipolar disorder. The authors measured spontaneous brain activity in subjects with bipolar disorder in mania and euthymia and compared these states to a healthy comparison population. METHODS: 23 subjects with bipolar disorder type I in a manic episode, 24 euthymic bipolar I subjects, and 23 matched healthy comparison (HC) subjects underwent resting state fMRI scans. Using an existing parcellation of the whole brain, we measured functional connectivity between brain regions and identified significant differences between groups. RESULTS: In unbiased whole-brain analyses, functional connectivity between parietal, occipital, and frontal nodes within the dorsal attention network (DAN) were significantly greater in mania than euthymia or HC subjects. In the default mode network (DMN), connectivity between dorsal frontal nodes and the rest of the DMN differentiated both mood state and diagnosis. LIMITATIONS: The bipolar groups were separate cohorts rather than subjects imaged longitudinally across mood states. CONCLUSIONS: Bipolar mood states are associated with highly significant alterations in connectivity in two large-scale brain networks. These same networks also differentiate bipolar mania and euthymia from a HC population. State related changes in DAN and DMN connectivity suggest a circuit based pathology underlying cognitive dysfunction as well as activity/reactivity in bipolar mania. Altered activities in neural networks may be biomarkers of bipolar disorder diagnosis and mood state that are accessible to neuromodulation and are promising novel targets for scientific investigation and possible clinical intervention.


Assuntos
Afeto , Transtorno Bipolar/patologia , Encéfalo/patologia , Descanso , Adulto , Atenção , Transtorno Bipolar/psicologia , Mapeamento Encefálico/métodos , Estudos de Casos e Controles , Transtorno Ciclotímico/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
20.
Mol Genet Metab ; 119(1-2): 144-50, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27471012

RESUMO

Fabry disease is a glycosphingolipid storage disorder that is caused by a genetic deficiency of the enzyme alpha-galactosidase A (AGA, EC 3.2.1.22). It is a multisystem disease that affects the vascular, cardiac, renal, and nervous systems. One of the hallmarks of this disorder is neuropathic pain and sympathetic and parasympathetic nervous dysfunction. The exact mechanism by which changes in AGA activity result in change in neuronal function is not clear, partly due to of a lack of relevant model systems. In this study, we report the development of an in vitro model system to study neuronal dysfunction in Fabry disease by using short-hairpin RNA to create a stable knock-down of AGA in the human cholinergic neuronal cell line, LA-N-2. We show that gene-silenced cells show specifically reduced AGA activity and store globotriaosylceramide. In gene-silenced cells, release of the neurotransmitter acetylcholine is significantly reduced, demonstrating that this model may be used to study specific neuronal functions such as neurotransmitter release in Fabry disease.


Assuntos
Neurônios Colinérgicos/patologia , Doença de Fabry/genética , Neuralgia/metabolismo , alfa-Galactosidase/genética , Neurônios Colinérgicos/metabolismo , Doença de Fabry/metabolismo , Doença de Fabry/patologia , Técnicas de Silenciamento de Genes , Terapia Genética , Humanos , Rim/metabolismo , Rim/patologia , Neuralgia/genética , Neuralgia/patologia , Sistema Nervoso Parassimpático/metabolismo , Sistema Nervoso Parassimpático/patologia , RNA Interferente Pequeno/genética , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/patologia , Triexosilceramidas/metabolismo , alfa-Galactosidase/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...